Problem:
一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级… 它也可以跳上 n 级。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
Intuition:
数学推导
跳上 n-1 级台阶,可以从 n-2 级跳 1 级上去,也可以从 n-3 级跳 2 级上去…,那么
f(n-1) = f(n-2) + f(n-3) + … + f(0)
同样,跳上 n 级台阶,可以从 n-1 级跳 1 级上去,也可以从 n-2 级跳 2 级上去… ,那么
f(n) = f(n-1) + f(n-2) + … + f(0)
综上可得
f(n) - f(n-1) = f(n-1)
即
f(n) = 2*f(n-1)
所以 f(n) 是一个等比数列
solution:
1 | public int JumpFloorII(int target) { |